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A theory for kinetic arrest in isotropic systems of repulsive, radially interacting particles is presented that
predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in
agreement with simulations, including the nontrivial shear exponent. Both statics and dynamics are treated in
a simplified, one-particle level description and coupled via the assumption that kinetic arrest occurs on the
boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests that
the arrested states observed in simulations are at �or near� an elastic buckling transition. Some additional
numerical evidence to confirm the scaling of microscopic quantities is also provided.
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I. INTRODUCTION

Determining when and how a self-assembled particulate
system is capable of supporting macroscopic loads appears
to be becoming established as a core paradigm in nonequi-
librium condensed matter. For many dissipative athermal
systems, such as granular media �1–7�, foams �8–10�, or
emulsions �11,12�, the removal of a heat bath or other energy
source results in a monotonic decrease of particle motion
until a state of kinetic arrest is reached. The morphology, and
hence mechanical response, of this static phase is determined
by the dynamics of its preparation �1�, demonstrating the
central importance of the initial dynamic phase and high-
lighting the nonequilibrium nature of the problem. It is this
aspect that delineates self-assembled systems to those with a
predefined geometry, such as the tensegrity structures of
great importance to engineering �13–15� or the disordered
discrete and continuous models of rigidity percolation
�16–25�.

A generic feature of these distinct but related problems is
the existence of a rigidity transition between states that have
nonzero elastic moduli and those that do not �26–33�. For
bond diluted lattices, the rigidity transition corresponds to a
critical bond dilution or, equivalently, a critical mean coordi-
nation number zc, which is well approximated by the Max-
well constraint counting method �13�. This transition appears
to bear some of the hallmarks of a continuous phase transi-
tion in equilibrium systems, including a diverging length
scale, although other properties such as universality remain
unproven �20�. For particulate systems, the picture is less
clear. Central force models, such as frictionless elastic
spheres in the limit of small deformation, appear to reach a
similar transition �5,29�, also with a diverging length scale
�34�, in the limit of infinite interaction stiffness under con-
trolled pressure. If the volume is controlled, a critical volume
fraction must be fine-tuned. However, the introduction of
friction, at least, appears to overshoot the critical zc by at
least a few percent when in gravity �4,5�, the exact amount
apparently depending on the damping.

Even when the transition can be approached arbitrarily
closely, there remain crucial differences between disordered
lattices and particulate systems. In particulate systems, the

morphology of the solid state depends on the dynamics of
the immediate precursor to arrest and may therefore include
nontrivial, correlated structures. Most studies of lattice mod-
els assume morhpologies with no structure beyond the one-
bond level. Furthermore, particles may become arrested in a
state with a finite pressure P�0, quite unlike the stressless
configurations typically adopted in lattice models. Attempts
have been made to circumvent some of the deficiencies of
lattice models by postulating initial configuration generating
algorithms that are hoped to mimic the dynamic self-
assembly of particulate or atomic systems. Indeed one such
scheme, known as bootstrap percolation, has already been
applied to this problem �35� and, by infinite-dimensional cal-
culations, claims to determine the exponents observed in
simulations of central force systems.

The purpose of this paper is to describe an analytical
scheme that, when applied to isotropic systems of particles
interacting via central forces, derives the exponents relating
pressure, shear modulus, and volume fraction to z−zc ob-
served in simulations. There is no mapping to a known
model or assumption of any statistical mechanical analogy,
as recently suggested by the elegant theory of Henkes and
Chakraborty �36�. Instead, the properties of the static system
are approximated according to a minimum-assumption phi-
losophy that proposes a series of intuitive approximations to
locally close the equations. For the dynamics, a one-contact
level closure is employed, whereas for the statics the ap-
proximation takes place somewhere between the one-contact
and one-coordination shell level, in that it considers all con-
tacts acting on a particle but ignores correlations between
them. The static aspect of this scheme has already been ap-
plied to mixed tensile-compressive systems �37�.

The central result of this paper is schematically repre-
sented in Fig. 1, in which the statics and dynamics of the
theory have been overlayed into a single plot. The axes are z
and �, where � is proportional to the mean particle overlap,
so higher � corresponds to increasingly compressive con-
tacts. The rigidity transition lies at z=zc , �=0, which corre-
sponds to the same unstressed transition observed in, e.g.,
lattice models. The anomalous low zc=3 �which should be
closer to 2d=6 in this d=3 dimension example� is explained
later, but is essentially due to the reduction of degrees of
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freedom inherent in the approximation scheme. The shaded
region corresponds to systems that are mechanically stable in
that they generate a positive restoring force in response to a
localized, linear perturbation. The upper boundary of this
stable region, which represents some form of buckling, is
locally quadratic, and it is this shape that ultimately deter-
mines the exponents.

This static picture is augmented by a global description of
the system dynamics from excited to arrested states. Again,
approximations are required; in this instance, the kinetic en-
ergy is ignored and the system is assumed to evolve towards
state with a lower internal energy �in the case of fixed vol-
ume� or enthalpy �in the case of fixed pressure�, not unlike
thermal systems �38� but without temperature and entropy
terms. Some choice is required in defining volume in terms
of z and �, but for rapid quenches from highly excited states,
a single-particle volume function should be valid and will
robustly give the direction given in the figure. This drives the
system towards the stable region. Kinetic arrest is assumed
to take place when the boundary of the stable region has
been reached; that is, the configurations observed in simula-
tions lie on a line of buckling transitions. By suitably con-
trolling pressure or volume, it is possible to bring the system
to the same rigidity transition as in stressless systems, but
along a different line to the ��0 systems considered in dis-
ordered lattices.

II. STATICS: THE MEAN-MODE APPROXIMATION

A variety of approximate analytical treatments for predict-
ing the mechanical response of athermal materials have been
devised; just two will be mentioned here by way of compari-

son. Perhaps the most straightforward is to assume that the
induced deformation field is affine, so the interparticle dis-
placements are just scaled-down versions of the macroscopic
field. This has been applied to frictional granular media �39�,
but is incapable of predicting a rigidity transition at a finite
density or volume fraction. Even sidestepping this deficiency
by directly comparing elastic moduli to pressure does not
resolve its failings �31�, indicating that modes near the tran-
sition are inherently nonaffine. Enhanced versions have been
proposed in which additional degrees of freedom are intro-
duced and determined by variational principles �40,41�, but
only at the cost of significant additional complexity and still
not suitable for studying the transition.

Another approach, extensively applied to unstressed sys-
tems of predefined morphology, is known as the effective
medium approximation �EMA� �although this term is some-
times also applied to the affine approximation �39��. Here the
disordered system is replaced by a homogenous analog with
effective interaction parameters. The procedure can be
crudely summarized as follows: a single disordered element
is inserted into the homogenous bulk and the response to this
isolated defect determined using the Green’s function. The
effective parameters are determined by demanding that the
mean response averaged over all possible states of the in-
serted element be zero. Although this has been successfully
applied to a range of continuous and lattice systems
�16,18,42,43�, it has a fatal shortcoming when applied to
particulate systems: the calculation cannot proceed without
first identifying an analogous homogeneous material with a
known Green’s function. It is difficult to postulate such an
analog for finite-size particles, except in certain special cases
such as quasiordered systems �44�. Furthermore, we have
already argued that prestress is likely to be important, and
even for lattice spring networks the Green’s function with
prestresses is not known exactly �24�. For granular media the
problem is particularly acute, as the Green’s response has
been the subject of substantial debate in recent years �see,
e.g., �1–3� and references therein�. The approximation
scheme detailed below circumvents these issues, as we de-
scribe below.

For this first exposition of the theory, the nondamping part
of the interparticle interaction is assumed to be a purely ra-
dial pair potential, generating central forces acting along
lines connecting particle centres. This choice is made to re-
duce the parameter space to a manageable size and to allow
a systematic and lucid unfolding of the resulting phase struc-
ture of the system. Nonetheless, this simplification should
hold approximately true for emulsions or wet foams near the
transition, when all particles are only slightly deformed, al-
though it will clearly not apply to strongly deformed par-
ticles �or dry foams �8��. For real granular media there will
also arise transverse surface forces mediated by nonzero fric-
tion at the bead-bead interface; purely central forces corre-
spond to frictionless spherical beads, which only truly exist
in numerical simulations.

A. Determining the mechanical stability

Given central force interactions, there is no need to track
particle orientations and the static system is fully specified

FIG. 1. Combined dynamic flow and static stability diagrams in
�z ,�� space, with z the mean coordination number and ��0 a
quantity proportional to the mean particle overlap. Solid �dashed�
lines correspond to lines of constant volume V �pressure P�, with
the direction of minimizing internal energy U �enthalpy H� given by
the arrows. Lines in the lower left corner correspond to smaller
pressure or larger volume. The system becomes kinetically arrested
at the boundary of the �shaded� stable region. The transition point at
�zc ,�� is shown as a solid disk �see text for discussion of zc�.
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by the d-dimensional position vectors x� of all particles �.
The force on � due to � is denoted by f��,

f�� = f�r���n̂��, �1�

where r��= �x�−x�� is the distance between particle centers
and n̂��= �x�−x�� /r�� is the unit vector from � to �. In this
context the scalar central force f�r� is usually taken to be of
the form

f�r� = ���1 −
r

r0
	�

, r � r0,

0, otherwise,

 �2�

with �=1 �truncated Hookean� or �=3/2 �Hertzian� and r0
is the sum of the two particle radii. The prefactor ��0 is
typically treated as a particle-independent parameter, al-
though strictly speaking it is a function of the radii of curva-
ture at the point of contact for Hertzian interactions �33,45�.
Note that with this sign convention, positive f corresponds to
compressive forces and negative f to tensile ones.

Suppose we are given an initial configuration �x�� that is
static; i.e., the vector sum of all contact forces on each par-
ticle vanishes. To determine its linear stability, apply an ar-
bitrarily small external force 	fext onto the particle lying
nearest some arbitrary point in space—call this particle �
�not to be confused with the force-law exponent�. If the sys-
tem is stable, it will move to a nearby static configuration in
which all particles � have been displaced to x�+	x� with
�	x�
r0. Force balance must again be obeyed; i.e., the
changes in contact forces on � sum to zero for ��� and to
−	fext for particle �.

The response 	x� for a particular configuration �x��, even
if tractable, would be of no practical interest, and we must
instead ensemble an average, keeping fixed a set of param-
eters that dominate the mechanical response of the system. A
wealth of data has shown the mean coordination number z to
be a crucial factor in determining stability, and Alexander
�46� has highlighted the importance of prestresses, so we
also assume that both z and some measure of the initial con-
tact force distribution are kept fixed. Once the ensemble �de-
noted by the angled brackets 
¯� below� has been suitably
defined, the requirement of force balance on the perturbed
bead � can be written

	fext − � �
���

	f��� = 0 , �3�

where the sum is over all � interacting with �. The change in
contact force 	f�� can be related to the particle displace-
ments 	x� and 	x� by

	f i
�� = Aij

���	xj
� − 	xj

�� , �4�

with summation over Roman indices only. The d�d matrix
A�� is defined by �47�

Aij =
f�r�

r
�	ij − n̂in̂j� + f��r�n̂in̂j , �5�

assuming f�r� is continuous with a finite first derivative
f��r��0 over all r of interest. Here and below the suffices

� , � are dropped whenever the meaning is clear.

B. Derivation of the mean-mode approximation

So far this is exact but intractable. Now we approximate.
Consider that, for an isotropic system, the perturbed bead
must move parallel to the external force after averaging,

	x��=�	fext with an unknown compliance �. The philoso-
phy of the mean-mode approximation �MMA� is to impose
this form before averaging—i.e., inside the brackets in Eq.
�3�. In this way the dependence of 	x� on the entire initial
configuration �x�� is subsumed into the single scalar param-
eter �. This is clearly a significant savings in terms of com-
plexity, although it disallows the transverse motion of the
particle and hence reduces the degrees of freedom; the con-
sequence of this on the location of the rigidity transition will
be discussed later.

The logical continuation of this approach is to similarly
replace the 	x� by 
	x��; however, this averaged form can-
not be determined by symmetry considerations alone. Instead
we assume here that the change in the contact force with �
can be treated as an external force on �, so that 	x�

=�	f�� with the same � as before. Intuitively, this corre-
sponds to the statement that the displacement of � is domi-
nated by the change in contact force with �, which, for a
monotonically decaying force field extending outwards from
�, should at least not be embarrassingly wrong. These two
approximations taken together allow each contact force 	f��

to be uniquely determined from 	fext, as found by inserting
	x�=�	fext and 	x�=�	f�� into Eqs. �4� and �5� and invert-
ing,

	f i
�� = Sij

��	f j
ext,

Sij
�� = �1 + ���f��r�����−1�−1n̂i

��n̂j
�� + �1 − ��f�r���

r�� 	−1�−1

��	ij − n̂i
��n̂j

��� . �6�

Thus each 	f�� is independent of the others. Note that the
unphysical singularity at �f /r=1 is avoided by the stability
equation below.

It is apparent from Eq. �6� that the MMA has reduced the
global problem to a local one, in which the response of each
contact 	f�� depends only on the interparticle separation r��

�through which f�r� and f��r� are found�, the unit vector n̂��,
and the coordination number for this bead z�, implicit in the
summation �3�. Before the averaging can be completed, it is
necessary to specify how these quantities vary. Here we will
deliberately take simple forms to facilitate a transparent in-
terpretation of the results. First, z� is taken to be independent
of the contact forces and orientations, allowing the z� aver-
aging to be performed and the the force balance equation �3�
rewritten as

	f j
ext�	ij − z
Sij

������ = 0, �7�

where z is the mean coordination number and the averaging
is now over n�� and r��. Since 	fext is arbitrary, the quantity
inside the brackets in Eq. �7� must vanish.

We further assume that the bond orientations are indepen-
dent of the contact forces. The n̂�� are taken to be indepen-
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dent, identically distributed random variables, uniformly dis-
tributed over the �d−1�-dimensional unit hypersphere. This
neglects any correlations in the topology of the network. It
also ignores excluded volume effects, as it allows the same
particle to have bonds arbitrarily close together �so the con-
tacting particles would significantly overlap�; this should not
be crucial near the transition, which is determined by stabil-
ity requirements rather than excluded volume, but will be
relevant at higher z. Performing the average gives

z� d − 1

d
�1 − ��f

r
	−1�−1

+
1

d
�1 − ��f��−1�−1� = 1, �8�

where the identity 
n̂in̂j�= �1/d�	ij has been used.
It remains to specify how the contact forces are distrib-

uted. In principle, only configurations consistent with force
balance should be allowed, but this complication becomes
redundant given the approximations leading to Eq. �6�,
which allows the response from each contact to be calculated
independently. A natural choice is then to assume that each
contact force f�r� or, equivalently, each interparticle separa-
tion r is identically and independently distributed according
to some given distribution. Clearly this neglects any correla-
tions in the initial force network, but force balance is ensured
on average by virtue of the uniform distribution of contact
angles already employed. Some calculations for general
force distributions will be described later. For now, the sim-
plest choice possible is made: namely a 	-function distribu-
tion corresponding to a monodisperse separation r, force
f�r�, and gradient f��r��0 for each contact. It is then pos-
sible to insert Eq. �6� into Eq. �8� and integrate; the result is
finally

d�1

z
− 1	 = �d − 1�

1

�f�r�
r

− 1

−
1

1 + ��f��
. �9�

This is a quadratic equation in �, which is easily solved.
Although � is in principle a measurable quantity, it is

more useful to specify results in terms of the shear modulus
G or bulk modulus K. These can be related to the compliance
� by specifying some suitable closed surface S and applying
an external force to each particle it cuts—i.e., forces parallel
to S for G and normal for K. Given the displacement of each
particle is 
�−1 according to the MMA, it is straightforward
to see that

G � BG�−1, K � BK�−1, �10�

where the prefactors B have dimension �length�2−d. The rel-
evant length scales are the characteristic length of the enclos-
ing surface L�

d−1�S and the particle radius r0 /2, but the local
closure of the MMA equations means we are unable to de-
termine their weighting in BG and BK. However, if � diverges
with L, as is trivially true for a d=1 system with fixed
boundaries, then B�Lr0

1−d to ensure finite moduli for arbi-
trarily large systems. Some form of divergence of � with L is
also expected from linear continuum elasticity �45�. This
subtlety is sidestepped below, where L is assumed to be fixed
and finite.

C. Stability regimes

Ignoring the trivial d=1 case, dimensionality only enters
via the prefactors and so all d�2 will be discussed together.
The solutions to Eq. �9� can be conveniently expressed in
terms of the two scalars z and �, where

� =
f�r�/r
�f��r��

�11�

�
1

�
�1 −

r

r0
	 �12�

is a dimensionless measure of the prestress in the system.
The second form �12� holds for the particulate potentials �2�
in the limit r→r0

−—i.e., close to the rigidity transition—
which is the regime of interest here. A schematic description
of the predictions of the MMA is given in Fig. 2. Some
important features are now discussed.

��0. This is the unstressed case in which all contact
forces are initially zero, nullifying use of the particulate po-
tentials �2�, which have no linear response at r=r0, but still
attainable for nontruncated Hookean springs. The equation
for � gives the single solution ��f��= �z /d−1�−1 or G , K
��z /zc−1� f with the transition point zc=d and an exponent
f =1. The effective medium theory for diluted spring lattices
also predicts f =1, but at the higher transition point zc=2d in
accordance with the Maxwell counting estimate �42�. The
transition value found here, zc=d, seems anomalous until one
recalls that the basic assumptions of the MMA restrict the
motion of the particles to mean forms, thereby reducing their
degrees of freedom and hence lowering zc. Despite this, the
MMA still predicts a finite transition and can therefore can
be used qualitatively. Any unease over the actual value could
be lessened by referring to it as an effective coordination
number zeff if desired.

FIG. 2. Stable regimes of �z ,�� space in the MMA model, for
d=3. The black disk at �d ,0� is the �unstressed� rigidity percolation
transition. All points z�d , �=0 are unstable. For ��0, corre-
sponding to tensile bonds, the system is always stable �light grey
region�. For ��0, corresponding to compression, only the dark
grey shaded region is stable.
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��0. When all of the bonds are tensile, there is always
one real, positive solution of � extending from arbitrarily
large z down to a lower value zmin=1. Again this value is too
small; zmin=2 is more probable—i.e., infinite chains of par-
ticles spanning the system. As �→0− with z�zc fixed, the
single root of � continuously approaches the unstressed so-
lution given above. Repeating this procedure for z�zc, how-
ever, reveals that � diverges as ���−1 and hence G , K����
vanishes continuously as the unstressed axis is reached.
Thus, just below the �=0 line, the elastic moduli are very
small and the system is inherently weak, becoming weaker
as z decreases. This may explain why the few attempts to
survey this region in disordered lattices �24,25� have ob-
served a rapid but gradual crossover of the transition from zc
to zmin: numerical noise and/or arithmetic precision may in-
correctly attribute zero values to small but finite moduli.

��0. For compressed bonds, the �z ,�� plane is parti-
tioned into a stable region with two distinct real, positive
roots and an unstable region for which both roots are either
complex or negative. The boundary between the stable and
unstable regions is quadratic near zc,

�bdy �
�z − zc�2

4d2�d − 1�
, z � zc. �13�

Both roots of � coincide on the boundary

�bdy �
z − zc

2d�z − 1�
r0

�
�4d2�d − 1�

��z − zc�2 	�

, �14�

and hence Gbdy, Kbdy��bdy
−1 ��z−zc�2�−1. Starting from the

stable regime and decreasing � to zero, one of the roots
diverges as �−1 while the other continuously approaches the
unstressed solution, crossing over to become the single root
in the tensile regime �where the other root becomes nega-
tive�.

The manner in which the compressive system becomes
unstable is noteworthy. On the boundary, r0−r��z−zc�2, f
��z−zc�2� and f���z−zc�2��−1�, which according to Eq. �6�
means that the force transfer is predominantly longitudinal.
As already noted by Alexander �46�, in such cases the change
in energy will be positive, from which he infers the system
should be stable. However, there are other ways of buckling.
An established alternative is a bifurcation to a different class
of solution �48�; we might also speculate that the energy
landscape may exhibit discontinuities in the limit of infinite
system size, allowing some form of catastrophic buckling. In
fact, the buckling as envisaged by Alexander, which corre-
sponds to ��0 here, does arise within the MMA, but only
for z�zc and small ��0. The upper boundary in Fig. 2
rather corresponds to when � becomes complex.

III. DYNAMICS: ENERGY MINIMIZATION

A system not in a shaded region in Fig. 2 will destabilize
under any nonzero noise, evolving its contact network ac-
cording to the dynamical particle interactions and hence al-
lowing z and � to vary. It can only come to rest in a me-
chanically stable region. Indeed for sufficiently damped
interactions, as assumed here, kinetic arrest can be identified

with the point at which the system first touches a stable
region. Strong damping also means that the kinetic energy is
always small, so that the system will evolve to minimize
some suitably defined energy potential. For constant volume
V, this potential is the internal energy U, here just the total
potential energy stored in the interparticle bonds. For con-
trolled pressure, the corresponding potential is the enthalpy
H=U+ PV �38�.

A crucial problem in integrating the fixed P or V dynam-
ics and the �z ,�� stability diagram is writing down expres-
sions relating V to z and �. This is likely to be a subtle issue;
under gentle shaking, the particles may form spatially ex-
tended structures that would necessitate many-particle vari-
ables to calculate V �6,7,49�, which is clearly beyond the
one-particle closure of the MMA equations. For now we ig-
nore such potential pitfalls and instead assume the following,
one-particle description, in the expectation that it will hold in
the initial dynamic phase from a highly excited initial state.
Simply assume that V is a decreasing function of both z and
�, as might be expected for uniform, global changes of these
variables. The precise choice of V�z ,�� should incorporate
the large changes in z that are possible for small changes in
r when the particles are barely touching—i.e., when �
1.
This can be written as

V,z
V,�

= D�b as � → 0, �15�

where the unknown exponent b is assumed here to obey b
�1 �b�1 alters the scaling behavior of V with z described
later, but not of P , G, or K�. The dimensionless constant D
�0 is some material-dependent parameter.

It is straightforward to derive the internal energy U by
employing the same approximations as used to perform the
integration of the MMA equations: namely, a constant �
= �1/���1−r /r0� and isotropic bond orientations n̂,

U =
Nz

2

r0�

� + 1
�����+1, �16�

which is the total number of contacts Nz /2 multiplied by the
bond potential. Similarly, the isotropic pressure P	ij is the
sum of the rif j for each bond, divided by the volume V, or
�for r�r0�

PV =
Nz

2

r0�

d
�����, �17�

where the identity 
n̂in̂j�= �1/d�	ij has been used.
Performing the minimization for both cases reveals

broadly the same behavior; the system will evolve in the
direction of increasing z and decreasing �, as schematized in
Fig. 1 and already discussed in the Introduction. For ex-
ample, for fixed V, the extremum of U �which we assume is
the minimum� is found by solving dU=0 simultaneously
with dV=0, where the latter gives the constraint of constant
volume. This can be rearranged to give U,�V,z=U,zV,� and
hence, from Eq. �16�,
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z�aV,z =
��+1

� + 1
V,�. �18�

This admits the single solution �=0 in the small-� regime of
interest here, so U is minimized when all particles are at the
limits of their interaction potentials �or at their natural
lengths for Hookean springs�. Given that the system is con-
strained to move on lines of constant V, Eq. �15�, the mini-
mum corresponds to a divergent z, clearly unobtainable in a
real system. Excluded volume and ordering effects must be
incorporated into the theory before any large-z treatment can
be attempted. Repeating the enthalpy minimization at fixed P
gives essentially the same behavior.

A. Kinetic arrest and scaling behavior

Given that minimization drives the system in the direction
of small � and large z, they will enter the mechanically
stable region of the �z ,�� diagram Fig. 1 somewhere along
the stability boundary. For overdamped dynamics, we as-
sume it also stops there, allowing the scaling behavior of
various quantities with z−zc to be determined. According to
Eq. �13�, the microscopic variable ���z−zc�2, which is con-
firmed by d=3 numerical simulation of Hertzian spheres
shown in Fig. 3. The relation between the elastic modulus G
and z−zc on the boundary has already been given Eq. �14�,

G � �z − zc�c, �19�

with c=2�−1. Note that this diverges as �→ 1
2

+, signifying
the breakdown of linear response in this admittedly atypical
class of pair potentials. At the transition point �z ,��= �zc ,0�,
the pressure P is zero with a finite volume V0, so PV
� PV0 to first order and scaling relations involving P can be

found independently of the choice of V, Eq. �15�. From Eq.
�17�,

P � �z − zc�e, �20�

with e=2�. Finally, for relations involving V, and hence the
volume fraction ��V−1, we find

V0 − V � �z − zc�g, �21�

with g=2 when b�1 �g=2b for b�1�. These results are
summarized in Table I, where they are compared to simula-
tion results on various central force systems.

It should be noted that the postulated forms for V0−V and
P already allow the bulk modulus K to be determined with-
out recourse to calculating the mechanical response, and as
expected �given the one–bond expressions for P and V�, the
predicted exponent is that of an affine deformation, K
� P / �V0−V���z−zc�2�−2, different from that of G given
above. These different exponents have also been seen in
simulations �29�, although they counter the consensus of lat-
tice models, where all elastic moduli obey the same scaling
behavior �20–23�. They also disagree with the MMA expo-
nents presented earlier, Eq. �10�. It is not yet clear if this is a
real physical phenomenon or a coincidence of anomalous
simulation results and naive choices for P and V in this
theory. In any case, we are forced to conclude that the MMA
predictions only apply to nonaffine deformations.

The similarity of the MMA exponent for G and that of
simulations is noteworthy, as the theory relied on a local
closure of equations and hence cannot incorporate the long-
wavelength modes observed in simulations �34�. Persisting
with the continuous phase transition analogy, it is possible
that the scaling regime for nontrivial exponents is incredibly
narrow; this is not without precedent, as ionic fluids exhibit
mean-field exponents except very near the critical tempera-

FIG. 3. Confirmation of the predicted scaling 
����z−zc�2 for
d=3 Hertzian spheres relaxed at constant volume. The straight line
is a fit to �
 �z−zc�h with h=1.92�6� and zc=5.86�4�, where figures
in brackets denote single standard errors on the last digit and zc

�2d=6 since �rigidly� disconnected rattler particles were included
in the average. The simulations were performed on an N=1000
monodisperse particle system using the conjugate gradient minimi-
zation routine in the COGNAC module of the open source numeri-
cal suite OCTA �53�.

TABLE I. Scaling relations between �z=z−zc, G, P, and �V
=V0−V���−�0� �with �0 the critical volume fraction� as pre-
dicted by the MMA theory, where � is the force-law exponent �2�,
d dimension. For comparison, results from simulations of central
force systems and the trivial �affine� predictions are also shown.

Model G��zc P��ze �V��zg

MMA

��0,d�2 2�−1 2� 2

Affine �see �29�� 2�−2 2� -

Wet foam �9�
�=1,d=2 �1a 2±0.4 2±0.4

O’Hern et al. �29�
�=1,d=2, 3 1.01±0.1a 2.1±0.2 2.04±0.1

�=3/2 ,d=2, 3 2.08±0.1a 3.15±0.3 2.08±0.1

Zhang and Makse �12�
�=1.28,d=3 - �2.45 �1.96

Makse et al. �33�b

�=3/2 ,d=3 - 3.3±0.5 2.1±0.6

aResult for shear modulus shown.
bOnly frictionless data shown.
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ture �54,55�. Alternatively the upper critical dimension may
simply be 2. It should be noted that most �but not all �29��
simulations maintain a fixed system size, which will also
give mean-field exponents when the correlation length ex-
ceeds the system size.

A brief survey of other simulations not shown in the table
indicate what new features will alter the scaling behavior and
hence represent relevant perturbations. Friction is an obvious
candidate, and indeed recent simulations of Zhang and
Makse �12� demonstrate that infinite friction will alter the
exponents. They also show that finite friction introduces a
history dependence, suggesting that a more advanced de-
scription of the dynamical phase will be required for a full
theory. Also, the molecular dynamics simulations of Kasa-
hara and Nakanishi �4,5� appear to find exponents consistent
with simple rationals that are nonetheless different to those
predicted here. This may be because their system has gravity,
and hence the contact network is anisotropic and the force
balance equations couple directly to an external field, either
of which may be a relevant perturbation.

B. Distributed contact forces

Of all the enhancements to the MMA theory that could be
incorporated, perhaps the most pressing is to relax the as-
sumption that every contact force f or, equivalently, every
particle overlap 	=r0−r is the same. Simulations have dem-
onstrated that these distributions are in fact continuously dis-
tributed right down to zero forces or overlaps �50–52�. Be-
low we present some calculations that probe the effect of
polydisperse 	 within the MMA framework. Our conclusion
is that it in fact makes very little difference to the overall
behavior of the system and does not change the exponents
already quoted. We are also able to confirm the scaling of the
overlap distribution as observed in simulations �29�.

The simplest way to incorporate distributed overlaps is to
retain the approximations leading to Eq. �8�—namely, inde-
pendent isotropic bond orientations n̂ and a local coordina-
tion number independent of the contact forces—and perform
the integral over a known, fixed distribution P�	�. This can
be performed explicitly for a convenient choice of
parameters—for instance, Hookean interactions �=1 with a
uniform overlap distribution P�	�=1/	0 for 0�	�	0. This
then produces an equation for � that collapses into the form
already studied, Eq. �9�, in the limit 	0→0, with the separa-
tion r replaced by a mean overlap r0−	0 /2. Given that the
volume function �15� still holds, we see that 	 being distrib-
uted uniformly down to 	=0 does not significantly alter the
statics or dynamics of the system in this case, but merely
modifies the prefactors.

More general distributions can be considered by assuming
that the behavior observed for the monodisperse case still
broadly applies. Specifically, we assume that a unique stress-
less rigidity transition exists at some point z=zc, and a
boundary between stable and unstable compressive regimes
extends continuously from this point into the region z�zc,
similar to Fig. 2. Furthermore, we assume that the system
becomes kinetically arrested on this boundary under energy
minimization. Therefore the averaged compliance � is ex-

pected to scale with the distance from the transition �= �z
−zc� /zc�0 as

� = �0�−� �22�

for small �, with � an unknown positive exponent. Then we
make the following scaling ansatz for the distribution of
overlaps P�	�:

P�	� = �−�q��−�	� , �23�

where q�x� is a fixed distribution. Equation �23� states that
the distribution of overlaps will uniformly contract as the
transition is approached, with a width s that vanishes as s
��� with ��0.

Inserting Eqs. �22� and �23� into Eq. �8� allows the inte-
gration to be performed. Different results occur for different
combinations of exponents, but only the form of solution for
���� and ���−1��� admits a stressless rigidity transition.
The equation for �0 in this case is

1 −
d

z
= �d − 1�

�0�

r0
�−�+��
x��q�x� +

1

�0��
��−���−1�
x1−��q�x�,

�24�

where the angular brackets here denote averaging over the
fixed distribution q�x�. Equation �24� admits a solution �
=0 at z=zc=d given the exponent inequalities just quoted. It
is similar to the monodisperse expression �9� with f replaced
by 
x��q�x� and 
x1−��q�x� the quantity related to f�.

Stable solutions of Eq. �24� correspond to �0 real and
positive, and so the boundary between the stable and un-
stable regions can be found using the familiar quadratic
equation formulas. For consistency with the earlier assump-
tion that the compressed stability boundary for 
x��q�x��0 is
continuously connected to the point z=zc , �=0, we find it is
necessary to impose �=2. This means that the width of the
overlap distribution scales as s��z−zc�2 near the transition.
The simulations of O’Hern et al. have shown that s���
−�c�� with � close to 1 for Hookean interactions �=1 in
d=3 �29�. According to Table I, this corresponds to s��z
−zc�2�, in agreement with the prediction �=2�=2 found
here. A second consistency check is that �0=O�1�, which
allows the second exponent to be fixed, �=2�−1. Note that
both of these exponents are equal to their counterparts in the
monodisperse-	 case—i.e., Eq. �13� for � and Eq. �14� for �.
Although this analysis in nonrigorous, it strongly suggests
that polydisperse contacts does not alter the scaling picture
presented earlier.

IV. DISCUSSION

A central feature of this class of problem is the intrinsic
interweaving between the dissipative dynamics as the system
cools, with the mechanical response of the arrested state. In
this paper, a minimal coupling has been presented: namely,
that the dynamics proceeds in an independent-particle man-
ner until a mechanically stable region is reached, Fig. 1. This
is highly simplified, and a more elaborate theory is desirable,
perhaps along the lines of the bootstrap percolation model
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approach �35�. Intuitively, we expect that, during the dy-
namic phase, transient overconstrained, rigid clusters will be-
come stressed by interparticle collisions and relieve this
stress by becoming nonrigid—i.e., expanding into neighbor-
ing, underconstrained regions. Kinetic arrest occurs when a
spanning rigid cluster forms. Note that this argument sug-
gests a dynamic homogenization process, perhaps explaining
the apparent appearance of mean-field exponents in d=2 and
3 simulations in Table I.

This first application of the mean-mode approximation
has been applied to arguably the simplest particulate prob-
lem: namely, repulsive central forces in an isotropic system.
The simplicity of its results suggests that additional features
could be included while remaining tractable. For instance,
friction and gravity would be needed before any sensible
comparison with real granular media could be made. A prob-
lem that may emerge is closing the equations; the averaged

force balance equation �3� only gives one scalar equation,
which is why the proposed displacement modes were param-
etrized by single scalar �. If a future application had too few
equations, one possible approach would be to assume that
the response will minimize the increase in elastic energy,
converting it to a minimization problem with any known
equations as constraints. In principle, displacement modes
with any number of unknown parameters could be intro-
duced by this approach.
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